Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

6 β-Hydroxy-5 β-methyl-20-oxo-19-norpregn-9(10)-en-3 β-yl acetate

R. M. A. Pinto, ${ }^{\text {a }}$ M. Ramos Silva, ${ }^{\text {b }}$ A. Matos Beja, ${ }^{\text {b }}$ J. A. R. Salvador ${ }^{\text {a }}$ and J. A. Paixão ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, P-3000-295 Coimbra, Portugal, and ${ }^{\text {b }}$ CEMDRX, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, P-3004-516
Coimbra, Portugal
Correspondence e-mail: jap@pollux.fis.uc.pt

Received 26 February 2009
Accepted 19 March 2009
Online 10 April 2009
In the title compound, $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{4}$, which is an intermediate in the synthesis of pregnane derivatives with a modified skeleton that show potent abortion-inducing activity, the conformation of ring B is close to half-chair due to the presence of both the $\mathrm{C}=\mathrm{C}$ double bond and the axial 5β-methyl group. Rings A and C have conformations close to chair, while ring D has a twisted conformation around the bridgehead $\mathrm{C}-\mathrm{C}$ bond. Molecules are hydrogen bonded via the hydroxyl and acetoxy groups into infinite chains. Quantum-mechanical ab initio Roothan Hartree-Fock calculations show that crystal packing might be responsible for the low values of the angles between rings A and B, and between ring A and rings C and D, as well as for a different steric position of the methyl ketone side chain compared to the geometry of the free molecule.

Comment

The Westphalen rearrangement is a well known reaction in steroid chemistry for the synthesis of olefinic 19 -norsteroids. This classical transformation involves migration of the 10β methyl group to the 5β-position with the formation of 5β -methyl- $\Delta^{9(10)}-19$-nor derivatives (Kamernitskii et al., 1987).

(I)

As part of our current interest in the applications of bismuth(III) salts to the chemistry of epoxysteroids (Pinto et al., 2006, 2007; Pinto, Salvador, Le Roux et al., 2008), we have recently reported a catalytic process for the preparation of Westphalen-type compounds (Pinto, Salvador, Le Roux et al.,
2008). Several 5β-methyl- $\Delta^{9(10)}$-19-norsteroids from the cholestane, androstane and pregnane series were prepared by reaction of the corresponding $5 \beta, 6 \beta$-epoxysteroids in 1,4 -dioxane, using a catalytic amount of bismuth trifluoromethanesulfonate (Pinto, Salvador, Le Roux et al., 2008).

Of special interest was the preparation of the title 5β -methyl- $\Delta^{9(10)}-19$-norsteroid, (I). This compound is a pregnane derivative with a modified skeleton, structurally related to the endogenous hormone progesterone. In the last decade, extensive synthetic work developed by Polman and Kasal led to the preparation of analogues of progesterone possessing a 5β-methyl- $\Delta^{9(10)}$-19-nor structure, which have shown potent abortion-inducing activity (Polman \& Kasal, 1990, 1991; Kasal et al., 1998). The title compound, (I), can then be seen as an intermediate in the synthesis of this family of compounds. In this communication, we report the molecular structure of (I) and compare it with that of the free molecule as given by quantum mechanical ab initio calculations.

The structure of (I) with the corresponding atomic numbering scheme is shown in Fig. 1. This steroid compound is from the pregnane series with a double bond located in ring B at $\mathrm{C} 9=\mathrm{C} 10$. The typical C19-methyl group is absent. The acetoxy group at C 3 is axial to ring A. The 5β-methyl group on ring B is also in an axial position, whereas the hydroxyl group at C6 is equatorial. The side chain attached to ring D is equatorial.

The dihedral angle between the least-squares planes of rings A and B is $19.43(10)^{\circ}$, while the dihedral angle between the mean planes through ring A and through rings C and D combined is 60.37 (6) ${ }^{\circ}$. Rings C and D are almost coplanar, as shown by the low value of the angle between their leastsquares planes of $7.53(6)^{\circ}$.

Rings A and C have conformations close to chair, as shown by the Cremer \& Pople (1975) parameters [for ring $A: Q=$ 0.507 (2) $\AA, \theta=168.3(2)^{\circ}$ and $\varphi=242.7(11)^{\circ}$; for ring $C: Q=$ 0.5811 (19) $\AA, \theta=2.49(19)^{\circ}$ and $\left.\varphi=274(4)^{\circ}\right]$. Ring B has a conformation close to half-chair $[Q=0.494$ (2) \AA, $\theta=$ 128.1 (2) ${ }^{\circ}$ and $\varphi=246.2$ (3) ${ }^{\circ}$. Ring D has a twisted conformation around the $\mathrm{C} 13-\mathrm{C} 14$ bond, with puckering parameters $q_{2}=0.457(2) \AA$ and $\varphi_{2}=194.4(3)^{\circ}$, and asymmetry

Figure 1
A view of the molecule of the title compound, with displacement ellipsoids drawn at the 50% probability level.
parameters (Duax \& Norton, 1975) $\Delta C_{2}(16)=\Delta C_{2}(13,14)=$ 3.9 (3) ${ }^{\circ}$.

Molecules of (I) are hydrogen bonded via the hydroxyl and acetoxy groups into infinite chains running in the [100] direction. Two short intramolecular interactions are present in the molecule: (i) between the 5β-methyl group and the neighbouring $\mathrm{O} 3 A$ atom, and (ii) between the C20 carbonyl O atom (O20) and one of the H atoms bound to C 16 (Table 1).

In order to gain some insight into how the crystal packing of (I) might affect the molecular geometry, we have performed quantum chemical calculations on the equilibrium geometry of the free molecule. These calculations were performed with the computer program GAMESS (Schmidt et al., 1993). A molecular orbital Roothan Hartree-Fock method was used with an extended 6-31 G(d,p) basis set. Tight conditions for convergence of both the self-consistent field cycles and the maximum density and energy gradient variations were imposed (10^{-5} atomic units). The program was run on the Milipeia cluster of UC-LCA (using 16 Opteron cores, 2.2 GHz runing Linux).

The $a b$ initio calculations reproduce well the observed experimental bond lengths and valency angles of the molecule. All valency angles match the experimental values within 2°. Calculated (calc) and experimental (exp) bond lengths agree within $0.025 \AA$, with the exception of the following bonds: $\mathrm{C} 3-\mathrm{O} 3 A[$ calc $=1.436 \AA$ and $\exp =1.467(2) \AA], \mathrm{C} 6-\mathrm{O} 6$ $[$ calc $=1.406 \AA$ and $\exp =1.432(2) \AA]$ and $\mathrm{C} 20-\mathrm{C} 21[$ calc $=$ $1.514 \AA$ and $\exp =1.487(4) \AA]$.

The calculations reproduce well the small dihedral angle between the least-squares planes of rings C and D [calc $=8.3^{\circ}$ and $\left.\exp =7.53(6)^{\circ}\right]$. However, the calculated dihedral angles in the free molecule between the least-squares planes through rings A and B [calc $=24^{\circ}$ and $\left.\exp =19.43(10)^{\circ}\right]$ and between the best planes through ring A and through rings C and D combined $\left[\right.$ calc $=71.4^{\circ}$ and $\left.\exp =60.37(6)^{\circ}\right]$ differ significantly from those of the molecule in the crystal. These results might be interpreted as being caused by a small induced defolding of the molecule due to crystal packing. In addition, the methyl ketone side chain is almost perpendicular to $\operatorname{ring} D$ in the calculations, but a large tilt is observed in the crystal, as shown by the $\mathrm{C} 13-\mathrm{C} 17-\mathrm{C} 20-\mathrm{C} 21$ torsion angle [calc $=$ -92.6° and $\left.\exp =-70.5(3)^{\circ}\right]$.

One of the aims of the present study was to gain some insight into the structural differences between (I) and $5 \beta, 6 \beta$ -epoxy-20-oxopregnan-3 β-yl acetate, the starting compound for the preparation of (I) and whose structure we have reported recently (Pinto, Salvador \& Paixão, 2008). This $5 \beta, 6 \beta$-epoxysteroid possesses a large $\mathrm{C} 19-\mathrm{C} 10 \cdots \mathrm{C} 13-\mathrm{C} 18$ pseudo-torsion angle of $15.74(17)^{\circ}$, which indicates a significantly twisted steroid nucleus (Pinto, Salvador \& Paixão, 2008).

Interestingly, the similar $\mathrm{C} 5 A-\mathrm{C} 5 \cdots \mathrm{C} 13-\mathrm{C} 18$ pseudotorsion angle for the title Westphalen-type compound is much lower, with a value of $-0.94(19)^{\circ}$. Calculated ab initio values also reproduce these findings [22.2 ${ }^{\circ}$ for $5 \beta, 6 \beta$-epoxy-20-oxopregnan-3 β-yl acetate (Pinto, Salvador \& Paixão, 2008) and 5.0° for (I)]. Thus, when the $5 \beta, 6 \beta$-epoxysteroid is
converted into 5β-methyl- $\Delta^{9(10)}$-19-norsteroid (I), a strong relief in the twist of steroid nucleus is observed. On the other hand, low values for the $\mathrm{C} 19-\mathrm{C} 10 \cdots \mathrm{C} 13-\mathrm{C} 18$ pseudotorsion angle are found in the literature for several $5 \alpha, 6 \alpha$ epoxysteroids (Hanson, Hitchcock \& Nagaratnam, 1999; Hanson, Hitchcock \& Kiran, 1999; Litvinovskaya et al., 1995).

These data suggest that important steric factors, such as the above-mentioned change in the torsion of the steroid nucleus, may contribute to explaining the differential reactivity observed between $5 \beta, 6 \beta$-epoxy- and $5 \alpha, 6 \alpha$-epoxysteroids, which do not react under the same reaction conditions (Pinto, Salvador, Le Roux et al., 2008), although similar electronic factors are present in both diastereomeric epoxides.

Experimental

The synthesis of 6β-hydroxy- 5β-methyl-20-oxo-19-norpregn-9(10)-en- 3β-yl acetate, (I), was carried out according to the previously reported method of Pinto, Salvador, Le Roux et al. (2008). The product of the reaction was isolated in 52% yield and identified as (I) from MS, IR, and one- and two-dimensional NMR analysis (Pinto, Salvador, Le Roux et al., 2008). Recrystallization from acetone/nhexane at room temperature gave colourless single crystals suitable for X-ray diffraction analysis.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{4}$
$M_{r}=374.50$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.8903$ (2) \AA
$b=9.6929$ (2) \AA
$c=36.9988$ (8) \AA

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.882, T_{\text {max }}=0.991$

$$
V=2112.41(10) \AA^{3}
$$

$Z=4$
Mo $K \alpha$ radiation
Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.36 \times 0.23 \times 0.11 \mathrm{~mm}$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.133$
249 parameters
H -atom parameters constrained
$S=1.05$
3729 reflections

59317 measured reflections 3729 independent reflections 2885 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.041$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O6-H6A $\cdots \mathrm{O} 3 B^{\mathrm{i}}$	0.82	2.06	$2.863(2)$	166
C5A-H5A2 O3A	0.96	2.50	$3.104(3)$	121
C16-H16B \cdots O20	0.97	2.39	$2.803(3)$	105

Symmetry code: (i) $x+\frac{1}{2},-y+\frac{1}{2},-z$.

All C-bound H atoms were refined as riding on their parent atoms using SHELXL97 (Sheldrick, 2008) defaults [$U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C)]. The coordinates of the hydroxy H atom were initially determined from a difference Fourier synthesis and were refined as riding on the parent O atom $\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})\right]$ using a SHELXL97 HFIX 147 instruction with default values. The absolute

organic compounds

configuration was not determined from the X-ray data but was known from the synthetic route.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

This work was supported by Fundação para a Ciência e Tecnologia. RMAP thanks FCT for a grant (No. SFRH/BD/ 18013/2004). The authors gratefully acknowledge LCA-UC for granting computer time in the Milipeia cluster.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK3302). Services for accessing these data are described at the back of the journal.

References

Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Duax, W. L. \& Norton, D. A. (1975). In Atlas of Steroid Structure. New York: Plenum Press.
Hanson, J. R., Hitchcock, P. B. \& Kiran, I. (1999). J. Chem. Res. (M), pp. 23652383.

Hanson, J. R., Hitchcock, P. B. \& Nagaratnam, S. (1999). J. Chem. Res. (M), pp. 319-346.
Kamernitskii, A. V., Reshetova, I. G. \& Chernov, S. V. (1987). Pharm. Chem. J. 21, 736-744.
Kasal, A., Polman, J. \& Buděšinský, M. (1998). Collect. Czech. Chem. Commun. 63, 1549-1563.
Litvinovskaya, R. P., Ovchinnikov, Yu. E., Struchkov, Yu. T., Baranovskii, A. V. \& Khripach, V. A. (1995). Bioorg. Khim. 21, 139-142.

Pinto, R. M. A., Salvador, J. A. R. \& Le Roux, C. (2006). Synlett, pp. 20472050.

Pinto, R. M. A., Salvador, J. A. R. \& Le Roux, C. (2007). Tetrahedron, 63, 9221-9228.
Pinto, R. M. A., Salvador, J. A. R., Le Roux, C., Carvalho, R. A., Silva, M. R., Beja, A. M. \& Paixao, J. A. (2008). Steroids, 73, 549-561.
Pinto, R. M. A., Salvador, J. A. R. \& Paixão, J. A. (2008). Acta Cryst. C64, o279-o282.
Polman, J. \& Kasal, A. (1990). Collect. Czech. Chem. Commun. 55, 1783-1791.
Polman, J. \& Kasal, A. (1991). Collect. Czech. Chem. Commun. 56, 2892-2905.
Schmidt, M. W., Baldrige, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, K. A., Sue, S., Windus, T. L., Dupuis, M. \& Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347-1363. Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

